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The Kohn–Sham potential veff(r) is the effective multiplicative
operator in a noninteracting Schrödinger equation that repro-
duces the ground-state density of a real (interacting) system.
The sizes and shapes of atoms, molecules, and solids can be
defined in terms of Kohn–Sham potentials in a nonarbitrary way
that accords with chemical intuition and can be implemented
efficiently, permitting a natural pictorial representation for chem-
istry and condensed-matter physics. Let εmax be the maximum
occupied orbital energy of the noninteracting electrons. Then
the equation veff(r) = εmax defines the surface at which classical
electrons with energy ε≤ εmax would be turned back and thus
determines the surface of any electronic object. Atomic and ionic
radii defined in this manner agree well with empirical estimates,
show regular chemical trends, and allow one to identify the type
of chemical bonding between two given atoms by comparing
the actual internuclear distance to the sum of atomic radii. The
molecular surfaces can be fused (for a covalent bond), seamed
(ionic bond), necked (hydrogen bond), or divided (van der Waals
bond). This contribution extends the pioneering work of Z.-Z.
Yang et al. [Yang ZZ, Davidson ER (1997) Int J Quantum Chem
62:47–53; Zhao DX, et al. (2018) Mol Phys 116:969–977] by our
consideration of the Kohn–Sham potential, protomolecules, dou-
bly negative atomic ions, a bond-type parameter, seamed and
necked molecular surfaces, and a more extensive table of atomic
and ionic radii that are fully consistent with expected periodic
trends.

atomic radius | molecular surface | Kohn–Sham potential |
chemical bonding | classical turning point

Our human minds are adapted to a three-dimensional clas-
sical world, identifying and visualizing objects by the sizes

and shapes of their surfaces. This intuition serves us well even
on the atomic scale of chemistry and condensed-matter physics:
Atoms and atomic ions are essentially spheres of varying size
that can bind together in several ways (1). In a covalent bond,
atoms fuse together, losing much of their identity as they cre-
ate a molecule or solid with a fused surface. In an ionic bond,
positive and negative atomic ions retain more of their identity,
binding together by long-ranged electrostatic forces. In a van
der Waals bond, neutral atoms or molecules retain nearly all
of their identity. A hydrogen bond is a mix of those three bond
types (2).

How can we define, visualize, and represent the sizes and
shapes of atoms, molecules, and solid surfaces (including any
internal surfaces)? There have been many ingenious and use-
ful constructions of the radii of atoms and atomic ions based
upon the observed nuclear geometries of their bonded structures
(for instance, refs. 3–8). But the underlying theory, quantum
mechanics, does not seem to predict a sharp surface. Instead
it predicts an electron density that is distributed nonuniformly
over all of three-dimensional space, decaying exponentially at
positions far enough away from an atom, ion, or molecule.
One might define the surface as a particular isodensity con-
tour (usually 0.001 e/a3

0 ). Radii of atoms and singly posi-
tive ions determined in this manner for elements 1–96 were

given by Rahm et al. (9). The drawback of this definition
is that the choice of a cutoff density is somewhat arbitrary
(10). Alternative definitions rely on surfaces of maximum radial
electron density (8) (which do not generalize to nonspherical
objects like molecules), isosurfaces of the electrostatic poten-
tial (11), fraction of the total electron density (12), and other
ideas.

In classical physics, noninteracting electrons of maximum en-
ergy εmax bound by an effective potential veff(r) are confined
inside the classical turning surface defined as the set of all points
r that satisfy the condition

veff(r)= εmax. [1]

Classical electrons are turned back when they strike this surface,
although quantum-mechanical ones can tunnel out. In a series of
pioneering papers, Yang and coworkers (13–21) explored atomic
and molecular shapes defined as classical turning surfaces of the
“potential acting on an electron in a molecule” (PAEM),

vPAEM
eff (r)= vESP(r)+ vhole

XC (r), [2]

at εmax =−I , where I is the first vertical ionization energy of the
system. In Eq. 2, vESP(r) is the molecular electrostatic potential
(ESP) and vhole

XC (r) is the potential of the exchange-correlation
hole charge (22) derived from an interacting wavefunction. For
a Hartree–Fock wavefunction, vhole

XC (r) is called the Slater
potential (23).

Significance

Can quantum mechanics predict a well-defined and chemi-
cally intuitive size and shape for an atom or a molecule? We
show that the bounding surface of a chemical species can
be naturally defined as the classical turning surface of the
Kohn–Sham potential—an effective potential that, acting on
noninteracting electrons, yields the ground-state density of
the real system. The atomic and ionic radii defined in this man-
ner display all expected periodic trends, while the ratio of a
bond length to the sum of atomic or ionic radii identifies the
type of the bond (covalent, ionic, hydrogen, or van der Waals).
The proposed approach permits a visual representation of
chemical species that is intuitive and quantum-mechanically
rigorous at the same time.
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Despite being conceptually fruitful, the definition of molec-
ular surfaces in terms of PAEMs has a few weaknesses. First,
the PAEM is not a functional derivative of any density func-
tional (24, 25) and thus not a true effective potential. Second,
the value of εmax =−I has to be determined separately from the
PAEM (for instance, taken from experiment). Third, the PAEM
misses important structural features (26–29) and is too negative
[because vhole

XC (r) is twice an ab initio exchange-correlation energy
per electron]. As a consequence, atomic radii and molecular sur-
faces derived from PAEMs do not always follow the established
chemical trends (21).

Now in the Kohn–Sham density-functional theory (30, 31),
there is an exact effective potential vKS

eff (r) that, acting on
fictitious noninteracting electrons, produces the same ground-
state electron density as that of the real (interacting) electrons.
Although not guaranteed to exist in every case (32, 33), vKS

eff (r)
does exist for many systems of chemical interest, and use-
ful approximations to it are always possible. The Kohn–Sham
effective potential may be written as

vKS
eff (r)= vESP(r)+ vKS

XC(r), [3]

where vKS
XC(r) is the Kohn–Sham exchange-correlation potential.

The latter is related to vhole
XC (r) by

vKS
XC(r)= vhole

XC (r)+ vresp(r)+ vc,kin(r), [4]

where vresp(r) and vc,kin(r) are, respectively, the response and
kinetic correlation potentials, expressible in terms of the inter-
acting wavefunction and the Kohn–Sham orbitals and orbital
energies of the system (34–36). It is these two terms that make
vKS

eff (r) qualitatively different from the PAEM. The value of
εmax is naturally determined by vKS

eff (r) as the energy of the
Kohn–Sham highest occupied molecular orbital (HOMO) (26).

Here we propose to define atomic sizes and molecular shapes
in terms of the classical turning surface of the exact Kohn–
Sham effective potential, that is, by Eq. 1 with εmax = εKS

HOMO.
We show that the classical turning surface of the Kohn–Sham
potential may be the most natural definition of molecular surface
that quantum mechanics and density-functional theory can offer.
We also demonstrate that atomic and ionic radii extracted from
vKS

eff (r) are in full accord with chemical intuition and expected
periodic trends. While the classical turning surface scales prop-
erly with system size, we show that simpler alternatives based on
the electron density often do not.

Methodology
The proposed definition of molecular surfaces requires construc-
tion of accurate Kohn–Sham effective potentials for atoms and
molecules. Standard density-functional approximations are gen-
erally insufficient for this purpose because they tend to produce
unrealistic exchange-correlation potentials (37).

Accurate Kohn–Sham potentials of many-electron systems
have been traditionally obtained by fitting vKS

eff (r) to a given
ab initio density (for instance, ref. 38 and references therein)
or by solving the optimized effective potential (OEP) equation
(39). Both of these approaches amount to solving an ill-posed
inversion problem and are not well suited for routine applica-
tions on account of numerical instabilities and basis-set artifacts
involved (40). The recently developed method for generating
Kohn–Sham potentials from electronic wavefunctions (41–43)
has made it possible to obtain high-quality Kohn–Sham poten-
tials in a run-of-the-mill manner. Here we use the definitive ver-
sion of this method, the modified Ryabinkin–Kohut–Staroverov
(mRKS) procedure of ref. 43, which we implemented locally in
the GAUSSIAN program (44).

The mRKS method takes an ab initio wavefunction of the
system as input and produces the corresponding Kohn–Sham
effective potential and its orbitals and orbital energies as out-
put. In particular, when the mRKS procedure is applied to a
Hartree–Fock wavefunction, it gives a Kohn–Sham-like multi-
plicative effective potential that, acting on noninteracting elec-
trons, recovers the corresponding Hartree–Fock ground-state
electron density with a small basis-set error vanishing in the
basis-set limit. To ensure that vKS

eff (r) approaches the correct
r→∞ limit, the mRKS procedure shifts the potential by a
constant fixed by the condition

εKS
HOMO =−IEKT, [5]

where IEKT is the vertical ionization energy of the system
extracted from the ground-state interacting wavefunction via the
extended Koopmans theorem (EKT) (45–48). For a Hartree–
Fock wavefunction, Eq. 5 reduces to εKS

HOMO = εHF
HOMO (42). As the

accuracy of the wavefunction increases, IEKT tends (48, 49) to
the exact first ionization energy I , which is the correct value of
−εKS

HOMO in the exact Kohn–Sham scheme (50).
For atoms and molecules with a single-reference character,

Kohn–Sham potentials derived from Hartree–Fock wavefunc-
tions are practically indistinguishable from exact exchange-only
(correlationless) OEPs (51, 52). In the absence of strong electron
correlation, they are also very good approximations to the exact
vKS

eff (r). We illustrate this general result in Figs. 1 and 2, which
show typical atomic and molecular Kohn–Sham potentials and
their classical turning points derived from Hartree–Fock, full-
configuration interaction (FCI), and full-valence complete active
space self-consistent field (CASSCF) wavefunctions, as well as
from the Perdew–Burke–Ernzerhof (PBE) density-functional
approximation (53) including correlation. In both Figs. 1 and
2, the turning points of the Kohn–Sham potentials obtained
from Hartree–Fock and correlated wavefunctions are close to
each other but are markedly different from the turning points
of the PAEM. The PAEM-based radius of the sodium ion in
the NaCl molecule is as much as 0.5 Å greater than the turn-
ing radius derived from the Kohn–Sham potential (Fig. 2). In
fact, the entire vKS

eff (r)-based molecular surfaces of NaCl derived
from the Hartree–Fock and full-valence CASSCF wavefunc-
tions are visually indistinguishable from each other and differ
significantly from the PAEM surface (SI Appendix, Fig. S1).
These observations suggest that it would be pointless to generate
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Fig. 1. Kohn–Sham effective potentials and the PAEM for the Be atom.
Each potential is derived from the wavefunction or functional shown in
parentheses. The circles mark the corresponding classical turning points.
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Fig. 2. Same as in Fig. 1 for the NaCl molecule at the experimen-
tal equilibrium geometry (re = 2.3609 Å). The correlated wavefunction is
(8,8)CASSCF.

classical turning surfaces of vKS
eff (r) from correlated wavefunc-

tions where a single Slater determinant would suffice. Therefore,
all mRKS production runs here are at the Hartree–Fock level
of theory.

Kohn–Sham effective potentials derived from standard den-
sity-functional approximations such as PBE are not negative
enough and give too-high εKS

HOMO values. Each of these errors
is large, but they counteract and, in some cases, cancel each
other to produce a reasonably accurate classical turning sur-
face (as in Fig. 1). In other cases, the cancellation of errors is
incomplete and the PBE turning points are closer to those of
the PAEM than to the turning points of accurate Kohn–Sham
potentials (as in Fig. 2). Approximate density functionals are also
known to give incorrect Kohn–Sham potentials for heteronuclear
molecules with stretched bonds, a defect that is manifested in
spurious fractional atomic charges (54–57) and is absent in the
Hartree–Fock description (55, 56).

In this work, the nonrelativistic ground-state Hartree–Fock
wavefunctions of neutral atoms and atomic cations were
obtained using the universal Gaussian basis set (58) augmented
with one set of polarization functions (UGBS1P); for anions,
we used the same basis set with additional diffuse functions
(UGBS1P+), as defined in the GAUSSIAN program (44). The
polarization functions are needed only for nonspherical atoms.
These basis sets are close to the basis-set limit. To construct
molecular surfaces of molecules and protomolecules, we used
correlation-consistent basis sets (59). All basis sets contained
only pure d , f , etc., functions. The size of the basis set used
in the mRKS method is not crucial: Smaller basis sets such as
6-31G∗ would have produced similar results for neutral atoms
and cations.

All Hartree–Fock and mRKS calculations were spin unre-
stricted. Thus, for open-shell systems there were two distinct
Kohn–Sham potentials, one for spin up and another for spin
down; the one used in Eq. 1 corresponds to the spin chan-
nel of the highest occupied spin-orbital, which in all cases was
the majority-spin channel. In the spin-unrestricted approach,
Kohn–Sham potentials of atoms and ions with completely or
half-filled electronic subshells (e.g., Li, Be, B+, N,. . .) have
spherically symmetric classical turning surfaces. For such atoms
(ions), Eq. 1 was solved by interpolation on the numerical
integration grid of the mRKS procedure. The turning radius
of each nonspherical atom (ion) was determined as in ref. 9,
that is, as the radius of a sphere whose volume is equal to
the volume V enclosed by the classical turning surface of the

atom (ion); each V was obtained by numerical integration. To
achieve benchmark accuracy, all numerical integrations were
performed using grids with 999 radial and 974 angular points
per atom.

Note that transition-metal atoms and ions with incompletely
filled d subshells may have different occupations of differently
shaped d orbitals in the ground-state Hartree–Fock and Kohn–
Sham wavefunctions. In such cases, a self-consistent Kohn–Sham
potential corresponding to a given Hartree–Fock density could
be challenging to converge and may not even exist.

Results and Discussion
Atomic and Ionic Radii. Fig. 3 shows the Kohn–Sham potential-
based atomic and ionic radii of the first 54 elements of the
periodic table. The electron configurations, spin multiplicities,
and HOMO energies of all these species (and some An+ ions
with n > 2) are listed in SI Appendix, Table S1. A dash in Fig.
3 means either that the Hartree–Fock solution could not be
found or that it gave εHF

HOMO > 0. Most of the missing values
are for transition-metal anions—systems that are challenging to
describe reliably using finite basis sets.

The smallest neutral atom in Fig. 3 is He (R=0.62 Å), and the
largest is Rb (R=3.84 Å). There are clear chemical trends. For
a given element, all radii decrease as electrons are removed and
more strongly so when this removal unveils an outer closed shell.
For the neutral atoms, radii increase down a column of the peri-
odic table, except for the Ni column, where there is a change of
orbital configuration from Ni (3d84s2) to Pd (3d10). The radii of
the neutral atoms decrease across a row, except where a new sub-
shell starts to fill, as in going from Be to B and from Ni to Cu. In
the nonrelativistic limit of large atomic number, the radii of the
neutral atoms are expected to approach column-dependent finite
limits (60). The radii of singly and doubly positive ions follow
the same trends as the radii of the corresponding isoelectronic
neutral atoms.

The large-r asymptote of the Kohn–Sham effective potential
is −(Z −N +1)/r . For a neutral atom, this is −1/r , but for a
doubly negative ion it is +1/r . An electron in the doubly nega-
tive ion can escape quantum mechanically by tunneling through
the corresponding potential barrier, but in classical physics it can
still be bound inside a turning surface. In practice, doubly nega-
tive atomic ions such as O2− do not exist in the free state except
as unstable scattering resonances, but are commonly assumed
to be present in ionic solids (at least formally). To estimate the
sizes of such anions, we extrapolated their radii using a third-
order polynomial in electron number N that is exact for N =
1, Z − 1, Z , and Z +1 (SI Appendix). The resulting estimates
are included in the Fig. 3 legend. Note that doubly negative
ions were not considered in the work of Yang and coworkers
(13–21).

Unlike the PAEM-based and density-based atomic radii, the
classical turning radii of the Kohn–Sham potential never break
the established periodic trends. In particular, the PAEM-based
radii of neutral atoms always increase slightly (21) from group
15 to group 16 (e.g., R=1.34 Å for N, R=1.38 Å for O),
whereas atomic radii derived from the Kohn–Sham potentials
decrease (Fig. 3), in agreement with most other definitions (3,
5–8). The radii of Fig. 3 even rectify a defect of isodensity
contour-based radii (9), which implausibly increase from group 1
(Na, K, Rb) to group 2 (Mg, Ca, Sr). Our definition also produces
the expected inverse dependence of R on Z for one-electron
atomic ions (R=2a0/Z ), whereas a surface of constant density
at 10−3 e/a3

0 yields an unexpected result, R= [ln(103/π)/2Z +
(3/2) lnZ/Z ]a0.

The correct behavior R∼ 1/Z for a one-electron ion could
alternatively be achieved by defining an isodensity surface out-
side of which we find a fixed number of electrons (e.g., 0.24 to

E11580 | www.pnas.org/cgi/doi/10.1073/pnas.1814300115 Ospadov et al.
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Fig. 3. Classical turning radii of the neutral atoms and ions of elements H through Xe. For each element A, the radii are shown for four different
species: A− (in blue), A (in black), A+ (in red), and A2+ (in purple). All values are based on the Kohn–Sham potentials generated from spin-unrestricted
HF/UGBS1P ground-state wavefunctions (HF/UGBS1P + for anions). The extrapolated radii of O2−, S2−, Se2−, and Te2− are 1.41 Å, 1.92 Å, 2.05 Å, and 2.28 Å,
respectively.

match the value from the classical turning surface of the one-
electron ion). But that definition would fail for a large spherical
uniform cluster, since the number of electrons outside the classi-
cal turning surface of its Kohn–Sham potential would grow like
the surface area or square of its classical turning radius, lead-
ing to another unexpected logarithm in the expression for R.
Another possibility is to define the radius of an electronic object
as that of a sphere containing say 98% of the electron density
(12), but that choice would predict very different radii for a uni-
form cluster and a similar cluster inside of which is embedded
another cluster of much higher electron density. It is not easy
to find a viable alternative to the classical turning surface of the
Kohn–Sham potential.

Finally, it is instructive to compare our first-principles atomic
radii to the crystallographic van der Waals radii recommended
by Batsanov (5) for neutral atoms. For the 48 elements appear-
ing both in our Fig. 3 and in table 9 of ref. 5, the mean atomic
radii are 2.2 Å and 2.1 Å, respectively, and the mean absolute
deviation of the one from the other is 0.3 Å. Standard van der
Waals (6) and covalent radii of neutral molecules, designed to
predict nearest-neighbor distances for nonbonded or covalently
bonded neighbors, are respectively often much larger and always
much smaller than our intrinsic radii.

Bonding Types. Classical turning surfaces of the Kohn–Sham
effective potential can be used to identify the type of chemical
bonding between two atoms, given the integer charge state of
each. Consider the bond-specific ratio

β(AB)=
dAB

RA +RB
, [6]

where dAB is the internuclear separation of atoms (ions) A
and B at the equilibrium molecular geometry, and RA and RB

are their intrinsic classical turning radii. Table 1 lists β values
for diverse molecules representing three paradigmatic types of
chemical bonds: covalent (nonpolar and polar), ionic, and van

Table 1. Bond-type ratio (β) evaluated for representative
gas-phase molecules using the equilibrium bond lengths (dAB)
and the atomic and ionic radii from Fig. 3

Bond type Molecule AB dAB, Å* β(AB)

Covalent H2 H–H 0.74144 0.35
N2 N≡N 1.0977 0.44
F2 F–F 1.4119 0.72
C6H6 C...– C 1.399 0.47

C–H 1.101 0.43
H2O O–H 0.9575 0.44
HF H–F 0.9169 0.45
HBr H–Br 1.4145 0.53

Ionic NaCl Na+Cl− 2.3609 1.04
LiH Li+H− 1.5949 0.90
LiF Li+F− 1.5639 1.03

Hydrogen (HF)2 F· · ·H 1.820† 0.89
(H2O)2 O· · ·H 1.942† 0.89
HCN· · ·HF N· · ·H 1.829† 0.80

Van der Waals Ne2 Ne· · ·Ne 3.100‡ 1.78
Ar2 Ar· · ·Ar 3.758‡ 1.46

*Experimental values from ref. 61 unless noted otherwise.
†MP2(full)/aug-cc-pCVQZ value.
‡From ref. 62.
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Table 2. Bond-type ratio (β) evaluated for various cubic crystals
using the experimental nearest-neighbor distances (d) from refs.
63 and 64 and the atomic and ionic radii from Fig. 3

Solid d, Å* β

Ionic M+X− (B1)
LiH 2.05 1.16
LiF 2.01 1.32
LiCl 2.57 1.31
LiBr 2.75 1.30
LiI 3.01 1.28
NaH 2.44 1.17
NaF 2.31 1.26
NaCl 2.82 1.24
NaBr 2.99 1.23
NaI 3.24 1.21
KH 2.85 1.15
KF 2.67 1.19
KCl 3.15 1.17
KBr 3.30 1.17
KI 3.53 1.15
RbH 3.02 1.13
RbF 2.82 1.17
RbCl 3.29 1.15
RbBr 3.43 1.14
RbI 3.67 1.13
AgF 2.46 0.97
AgCl 2.78 0.93
AgBr 2.89 0.92

Ionic M2+X2− (B1)
MgO 2.11 1.05
MgS 2.60 1.03
MgSe 2.73 1.03
CaO 2.41 1.01
CaS 2.85 0.98
CaSe 2.96 0.98
CaTe 3.18 0.98
SrO 2.56 0.99
SrS 3.01 0.98
SrSe 3.12 0.97
SrTe 3.33 0.97
CdO 2.35 0.89

Covalent (diamond)
C 1.54 0.52
Si 2.35 0.55
Ge 2.45 0.55
α-Si 2.81 0.58

van der Waals (fcc)
Ne 3.13 1.80
Ar 3.75 1.45
Kr 3.99 1.36
Xe 4.33 1.27

*d = a/2 for rock-salt type, d = a
√

3/4 for diamond type, and d = a/
√

2 for
fcc structures, where a is the lattice constant.

der Waals. Examination of these data suggests that the following
relationships tend to hold:

β. 0.7 (covalent bond) [7]
β≈ 0.9–1.3 (ionic bond) [8]
β& 1.3 (van der Waals bond). [9]

Hydrogen bonds, as mixtures of these three bond types, can have
β values anywhere between 0.5 and 1, although quintessential
cases fall into a narrower range of 0.7–0.9. Within each bond
type, weak bonds tend to have larger β values.

Eqs. 7 and 8 are analogous to the PAEM-based criteria sug-
gested by Zhao et al. (21) as a means to distinguish between
covalent and ionic bonds. Relation 7 is also implied in Batsanov’s
work (5), where pictures of strongly overlapping (β� 1) neutral-
atom spheres of covalent solids appear prominently. The remain-
der of this section provides numerous other examples supporting
the β-ratio approach to analyzing chemical bonding.

First, Eqs. 7–9 hold not only for gas-phase molecules, but
also for solids (Table 2). For 35 rock-salt–type (B1) crystals
that are commonly classified as ionic, the ratio β ranges from
0.9 to 1.3 and averages to 1.1 with a mean absolute devia-
tion of 0.1, in accord with Eq. 8. For covalent solids in the
diamond cubic crystal structure (C, Si, Ge, and gray Sn) we
find β= 0.52–0.58, in agreement with Eq. 7. Van der Waals-
bonded face-centered cubic (fcc) crystals of noble-gas atoms
have β values ranging from 1.80 for Ne to 1.27 for Xe, in accord
with Eq. 9.

The β-ratio bond-type test assumes that one knows a pri-
ori the specific integer-charge states of the two atoms. If these
states are unambiguous (as in H2 and NaCl), then the value of β
clearly and objectively determines the bond type. In the absence
of clear-cut charge-state information, possible β values can be
used to challenge misidentifications. Consider, for instance, the
HF and HBr molecules. Assuming that their bonds are polar
covalent, we have β(H–F)= 0.45 and β(H–Br)= 0.53, which are
well within the typical range of β values for covalent bonds. The
assumption that the bonds are ionic would yield β(H+F−)=
0.81 and β(H+Br−)= 0.82. These values fall below the nor-
mal ionic range and thereby cast doubt on the assumption of
ionicity.

Of course, the criteria of Eqs. 7–9 are imprecise, and there
is a continuum between different bond types. The fact that the
β value for a particular bond does not fall within any paradig-
matic type can be taken as an indication of a mixed-type bonding.
The hydrogen bond by definition falls into this category. Another
example is solids that are neither purely ionic nor covalent. Con-
sider, for instance, crystalline CuCl (d =2.34 Å), the bonding in
which was discussed by Zhao et al. (21). Using the PAEM-based
ionic radii from ref. 21, one has β(Cu+Cl−)= 0.74, whereas our
Kohn–Sham potential-based ionic radii give β(Cu+Cl−)= 0.79
and β(CuCl)= 0.63. These values clearly indicate a mixed-type
bonding that is more covalent than ionic. The zincblende struc-
ture of CuCl, taken by many semiconductors, also suggests a
component of covalent bonding.

Fig. 4. Classical turning surfaces of the Kohn–Sham effective potential for
the H2 protomolecule and the H2 molecule, both at the experimental equi-
librium geometry of H2 from Table 1. The Kohn–Sham potentials were
derived from atomic and molecular HF/aug-cc-pVQZ wavefunctions. Here
β(HH) = 0.35.
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The β-ratio test also works for coordinate covalent (dative)
bonds and for metal–ligand bonds in transition-metal complexes.
For example, the BF3 ·NH3 donor–acceptor complex with dBN =
1.59 Å has β(BN)= 0.51 and β(B−N+)= 0.41, indicating a
covalent bond in either case. The complex [FeCl4]2− with dFeCl =
2.30 Å has β(Fe2+Cl−)= 0.81, which suggests an ionic bond
with some covalent character. We find that metal–ligand bonds
in transition-metal complexes tend to have β values between 0.7
and 0.9, depending on the degree of their ionicity.

Apart from being a confirmation of what is already known, the
value of β can serve as a discovery tool in the quest for materi-
als with targeted properties. For instance, in a high-throughput
search for layered materials over many candidates of known
structures, the inequality β > 1 could be used to identify the
van der Waals bonds between layers that are easily exfoliated to
make 2D materials.

Covalent, Ionic, and van der Waals Molecules. Classical turning sur-
faces of the Kohn–Sham effective potential can also be used
to make revealing pictures of atoms, molecules, atomic clus-
ters, molecular complexes, solid surfaces, and other microscopic
chemical objects. We illustrate their usefulness in Figs. 4–7,
which show the classical turning surfaces of the Kohn–Sham
potentials for bonds of four different types: nonpolar covalent
(H–H), polar covalent (H–Br), ionic (Na+Cl−), and van der
Waals (Ne· · ·Ne). Each of Figs. 4–7 also shows the classical
turning surface of the corresponding protomolecule: the exte-
rior part of the union of the spherical surfaces of the free
atoms (ions) brought together at the experimental equilibrium
molecular geometry.

Fig. 4 depicts how two strongly overlapping atomic spheres of
the hydrogen protomolecule shrink and fuse seamlessly to form
a covalently bonded H2 molecule (β� 1). Similar results were
found for protomolecular and molecular surfaces of HBr (Fig.
5), HF, and N2 (SI Appendix).

In the ionically bonded NaCl molecule, the sodium and chlo-
rine are more similar in size to the free Na+ and Cl− ions than
to the free neutral Na and Cl atoms (Fig. 6). This suggests that
the protomolecule should be taken as a pair of Na+ and Cl−

ions. These ions overlap weakly if at all (β≈ 1) in the proto-
molecule and then fuse into the molecular NaCl surface with a
distinct seam that preserves much of their identities (although

Fig. 5. Classical turning surfaces of the Kohn–Sham effective potential for
the HBr protomolecule and the HBr molecule, both at the experimental
equilibrium geometry of HBr from Table 1. The Kohn–Sham potentials were
derived from atomic and molecular HF/aug-cc-pCVQZ wavefunctions. Here
β(HBr) = 0.53, β(H+Br−) = 0.82.

Fig. 6. Classical turning surfaces of the Kohn–Sham effective potential for
the neutral-atom NaCl protomolecule, the ionic protomolecule (Na+Cl−),
and the gas-phase NaCl molecule, all at the experimental equilibrium molec-
ular geometry of NaCl from Table 1. The Na+ ion is on the left. The Kohn–
Sham potentials were derived from atomic and molecular HF/aug-cc-pCVQZ
wavefunctions. Here β(Na+Cl−) = 1.04.

the polarization of the Cl− ion is clearly visible). It is signif-
icant that this seam does not exist in the PAEM-based NaCl
surface, which looks as smoothly fused as surfaces of covalent
molecules (SI Appendix, Fig. S1). The seam is a distinctive but
not universal visual feature of Kohn–Sham molecular surfaces
for ionic bonds: Other ionic molecules such as LiF also have
it, while molecules such as MgO do not (SI Appendix, Figs. S4
and S5).

In the van der Waals-bonded neon dimer, the atomic spheres
are disconnected and retain nearly all of their free-atom identi-
ties seen in the protodimer (Fig. 7), which suggests a noncovalent
interaction (β� 1). Moreover, the two atomic spheres of the
dimer remain disconnected and virtually unchanged even if the
nuclei are forced as close as dNeNe =0.6re .

The water dimer, (H2O)2, is held together by an archetypal
hydrogen bond. This bond shows up in the Kohn–Sham molecu-
lar surface of the dimer as a smooth narrow neck connecting the

Fig. 7. Classical turning surfaces of the Kohn–Sham effective potential for
the Ne2 protodimer and the van der Waals-bonded Ne2 molecule, both at
the experimental equilibrium geometry of Ne2 from Table 1. The Kohn–
Sham potentials were derived from atomic and molecular HF/aug-cc-pCVQZ
wavefunctions. Here β(Ne · · ·Ne) = 1.78.
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Fig. 8. Classical turning surface of the Kohn–Sham effective potential for
the water dimer, (H2O)2, at the MP2(full)/aug-cc-pCVQZ geometry. The
potential was derived from the HF/aug-cc-pCVQZ wavefunction. Here β=

0.44 for the four covalent O–H bonds and β= 0.89 for the hydrogen bond.

two water molecules (Fig. 8). The β value for the hydrogen bond
is 0.89, consistent with its hybrid nature.

The mRKS method can also be used with ease to generate clas-
sical turning surfaces of larger molecules such as benzene (Fig.
9). Note that the center of the benzene ring is a dimple and not
a hole in the classical turning surface. More examples of Kohn–
Sham classical turning surfaces of atoms, molecules, and their
complexes are in SI Appendix.

Concluding Remarks
Sharply defined surfaces of classical objects provide our first
understanding of the world, while noninteracting quantum me-
chanical electrons moving in an effective potential provide our
first understanding of atoms and the bonds between them. The
classical turning surface of the Kohn–Sham effective potential
defines the classical surface and thus the size and shape of a
chemical species. It also identifies covalent, ionic, and van der
Waals bonds in accord with chemical intuition. For covalently
bonded molecules like H2, HBr, and C6H6, this surface shows
the smooth fusion of the constituent atoms. For ionic molecules
like NaCl and LiF, there is a seam in the surface that preserves
some of the identity of the separate ions. For van der Waals
dimers like Ne2, there are two separate surfaces, preserving
nearly all of the identity of the constituents. For hydrogen-
bonded water clusters, there is a neck in the surface between
water molecules, arising from a weak overlap and merger of their
individual molecular surfaces at the equilibrium hydrogen-bond
length.

Our bond-type analysis using the β ratio of Eq. 6 starts from
a single first-principles radius for each atom (atomic ion) and
a given bond length, deducing there from the nature of the
bonding. The traditional empirical approaches (3, 4, 6–8) define
atomic (ionic) radii as those R values for which the ratio β would
be identically equal to 1.

In many cases, particularly for neutral atoms and covalent
molecules, classical turning surfaces of the Kohn–Sham effec-
tive potential are similar in shape but not in size to classical
turning surfaces of the PAEM. For ionic compounds, however,
the Kohn–Sham potential and the PAEM produce qualitatively

Fig. 9. Classical turning surface of the Kohn–Sham effective potential
for the benzene (C6H6) molecule at the experimental equilibrium geom-
etry from Table 1. The potential was derived from the HF/cc-pCVDZ
wavefunction.

different results. The PAEM-based molecular surface does not
capture the expected preservation of the chemical identity of
the constituent ions, whereas the Kohn–Sham potential-based
surface exhibits a distinct interatomic seam that preserves to
some extent the identities of the negative and positive ions. Thus,
the Kohn–Sham potential-based approach agrees with chemical
intuition in all bonding situations.

The classical turning surface of the Kohn–Sham potential is
also, via the Kohn–Sham one-electron Schrödinger equation,
the surface on which the Laplacian of the Kohn–Sham HOMO
vanishes,

∇2φKS
HOMO(r)= 0, [10]

a satisfyingly local condition. One might imagine using Eq. 10
with a Hartree–Fock or approximate Kohn–Sham HOMO to
estimate the classical turning surface of an atom or molecule.
[In practical calculations, this may require tricks for dealing
with oscillations and divergences of the second derivatives of
molecular orbitals expanded in Gaussian basis functions (65).]

A recent article, “Visualizing the microscopic world” (66),
opens with the following statement: “The human being tends to
dislike what he/she does not understand, and a perfect example
concerns the microscopic world. In the quest for understanding
it, visualization of its systems has always played a central role,
particularly because the entities in question are invisible to the
naked eye. In fact, images have been instrumental not only in
understanding the molecular world but also in the dissemina-
tion of information in general. Usually, the best illustrations are
based on general principles of good physical representation and
graphic design, but the link between scientific concepts and visual
representation is often difficult to achieve, in particular in the
educational context.” We believe that the classical turning sur-
face of the Kohn–Sham effective potential can serve as such a
link without compromises.
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